Historical changes in the concept of safety. A new approach for a modern society

Gilles MOTET LAAS, Univ. Toulouse & Foundation for an Industrial Safety Culture

Gilles.Motet@laas.fr Gilles.Motet@foncsi.org

Fondation pour une culture de sécurité industrielle

Introduction

Professor at INSA Toulouse

Oftware to System dependability:

☆ Prentice Hall (1996), InterEditions (1998), Kluwer (2002)

Safety to Risk Management

O Researcher at CNRS (LAAS)

- ISO TC 262: "Risk Management"
- OSCIENTIFIC DIRECTOR OF THE FOUNDATION FOR AN INDUSTRIAL SAFETY CULTURE

Toulouse

Industries ...

Best rugby team ...

Toulouse

and a southern-european atmosphere

Presentation objectives

- Risk (safety) = combination of the probability of occurrence of harm and the severity of that harm (Guide 51, 1990, 1999, 2012)
- Risk = the effect of
 uncertainty on objectives
 (ISO 31000, 2009)

- Risk & safety definitions changes resulting from societal changes
- Highlight effects on Mgt of safety by owners & regulators

Hazard (1st phase)

@ Risk = Hazardous phenomenon (hazard)

- ② Energies: Potential, kinetic, thermal, etc.
- ② Risk = a concept from Physics

Still frequently held viewpoint

- extended to
 - 🗘 toxicity of products
 - ☆ failure of system functions
 ☆ …

- Negative and intrinsic
 - ☆Laws of physics ☆Close to "natural risk"

Hazard

Stakeholders define Safety relative to the absence of hazard

Situation without hazard"

Peace of mind resulting from the absence of hazard"

Regulators require hazard elimination

☆1893: cars banned in Nice city center ☆2011: shale gas drilling banned in France

@Risk = Hazard

☆Hazard analysis

Hazardous Phenomenon

Treatment = elimination / reduction

Reduction of the negative effects
As well as the benefits

\$\langle E.g. High altitude of aircraft allows
\$\langle Fuel consumption reduction
\$\langle Reduction of emissions and ticket cost

The to balance Safety & Benefits?

=> Not negociable 、

\$ "Safety first"! ->

Order These [hazardous] phenomena may increase safety

\$\$ speed reduces falls (gyroscopic effect)
\$\$ leaning increases potential energy &
safety

Harmful event (2nd phase)

② Risk = Potential harmful event

☆Avoidance of the negative effects
(not the phenomenon)

Risk control

② Safety = Absence of accident (before: absence of hazards)

Safety = Absence of accident

Risk control

☆Risk assessment

- (1) based on the past (« Peace of mind resulting from the absence of accident »)
- (2) Assumes deterministic cause to effect relationship (physical law)

- ② Safety = Absence of accident
 - Absolute concept: true or false
 - ☆ In reality same circumstances ≠> same effects

② Safety = "Freedom from unacceptable risk" (Guide 51, 1999)

② Safety = <u>relative</u> concept

Which risk criteria to define the social acceptability of risk?

1. Likelihood of accident < Threshold

☆Accident:
 from impossible to improbable
 To control (vs. prohibit) accident
 occurrences

☆Assessment: Probabilistic approaches

- 2. Integration of consequences
- Risk = combination of the probability of occurrence of harm and the severity of that harm (Guide 51, 1999)
- ② Ex. Avionics regulation:
 Prob(Crash) < 10⁻⁹/H
- 0 Risk is

☆More abstract: ϕ -> Evt -> Potential evt

☆Negative

Acceptable \neq Desirable

3. Regulator compares individual harms with collective benefits

☆Bernouilli, 1760: vaccination of variola

➡ fatal for certain persons, but

♦ Overall life expectancy increase: 3 years

What does risk acceptability mean?

- If P (Crash) < 10⁻⁹/H is acceptable risk
 - ☆Why do <u>stakeholders</u> hesitate to fly after an crash?
 - ☆Why does the <u>regulator</u> require a design change?
 - ☆Why can airlines be sued (<u>society</u>)?

What does risk acceptability mean?

∂ Is Probability(Crash) < 10⁻⁹/H

- ☆ An acceptable quota?
 ◆ The estimated cost to be paid for progress
- A killing permit for engineers?
 To take into account economic requirements?

Effect of uncertainty (3rd phase)

- Engineers aim at <u>zero</u> accidents =
 their <u>objectives</u> (they do their best):
 - 🗘 Safety margins, Redundancies
 - 🗘 Fail-safe
 - ☆ Maintenance
 - 🗘 Pilot

Effect of uncertainty

But engineers are faced with uncertainty

Limited knowledge, imperfect models, limited analysis tools, human errors, etc.

They do the best they can

Risk (*ISO 31000 / 2009*) = <u>effect</u> of <u>uncertainty</u> on [the <u>achievement</u> of] the <u>objectives</u>

Uncertainty handling

How to handle uncertainty?

Suppressing uncertainty?

prohibiting its negative effects?

Controlling its negative effects?

Is uncertainty the new hazard?

Uncertainty handling

Our Uncertainty cannot be suppressed by knowledge

☆ More science => New questions!

Our of the second se

☆ Natural risk (earthquakes, etc.) & probabilistic laws

Uncertainty handling

Our of the second se

Scientific discovery: Penicillin by Alexander Fleming (1928)

Allows decision-making

is not the new hazard to be avoided

is a phenomenon whose effects have to be controled

Uncertainty	: A new challe	enge for safety
Thee steps.		
Hazard	Potential Evt —	Objectives
Physical	Abstract	Human
Determinist	Probabilistic	Uncertain
Technics	Engineer	Managers and all stakeholders
Control of technologies	Control of models	Control of decision making
How to deal with this new challenge?		

Risk Management Process

Our of Risk Management process

② Risk affecting risk management process

Risk Management Process

Examples of RM uncertainties

Uncertainty on the selection and use
 of the analysis techniques
 e.g. 31 methods in ISO 31010

☆Uncertainty on the effectiveness of the controls e.g. Rio-Paris crash: previous recoveries of sensor failures

☆10⁻⁹/H = Measurement of the effect of uncertainty on achievement of <u>Risk</u> <u>Management objectives</u>

Risk Management Process

- How to control the effects of uncertainty affecting the risk Management process, that is, the risks of the RM activities?
- Ist question: What are the objectives of RM?
- ② Defined by the Principles of ISO 31000

tO

Principles

01st Principle

Risk Management should create value (useful to organisation objectives) ☆Uncertainty on RM usefulness e.g. Bureaucratic activities ☆How to assess RM effectiveness (leading indicators)? ☆How to improve RM effectiveness? That is, how to control the risks affecting RM activities relative to this 1st objective?

Framework & Principles

Framework = Process for handling effects of uncertainties on RM

Framework & Principles

Hypothesis:
 Uncertain RM is
 only accepted
 if it is
 continuously
 improved (PDCA)=>
 Best effort to
 achieve Principles

Conclusion

Owners & authorities

Have invested in RM process

Should invest in the Framework

Should audit their RM process to identify uncertainties which can affect the achievement of the Principles.

Thank you for your attention

Gilles Motet

Gilles.Motet@insa-toulouse.fr Gilles.Motet@icsi-eu.org Gilles.Motet@foncsi.org