Quantifying Project Risk Information To Guide Option Selection

Nigel Toms
MSc ACMA MIRM

Corporate Risk Manager Watercare Services Ltd

Presentation Objectives

- Assessing and documenting threats, opportunities and estimating uncertainty
- Methods of quantifying and analysing risk information, and

 Methods of reflecting risk in Investment Appraisals and Sensitivity Analysis

Scottish Parliament Building

Planned Completion 2001 – Completed 2004

Estimate £41M - Actual Cost £431M

Main Reasons Why Project Risk Management Failed

Projects did not get the right people involved in the project risk process

A structured and comprehensive project risk management approach was not adopted

In 30% of projects, key risks were first identified after contract signing

Blake Dawson Report – Scope for Improvement 2011

Determining Project Scope/Objective

Continually changing the project scope during project <u>development / delivery</u> increases the risk

Time spent Peer Reviewing the scope always benefits the project in the longer term

Significant increases in project delivery schedules often indicate scope additions/changes

Project Slippage = Scope Changes

SCHEDULE COMPLETION DATE REVIEW

Project Phase	<u>Jun 14</u>	<u>Sep 14</u>	<u>Dec 14</u>
Planning	Jun 14	Sep 14	Commenced
Design	Aug 14	Nov 14	Mar 15
Construction	Nov 14	Feb 15	May 15
Commission	Nov 15	Nov 15	Dec 15
Operation	Dec 15	Dec 15	Dec 15

Objective / Scope

Project that delivers ??? requirements

- Highest + NPV or lowest NPV
- Delivered in less than X years
- Payback period less than X years
- IRR greater than X%

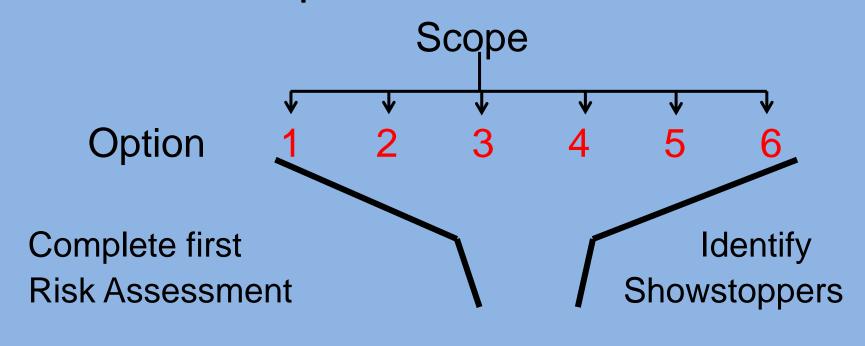
Project Risk Approach

Identify Options

Complete first risk workshop

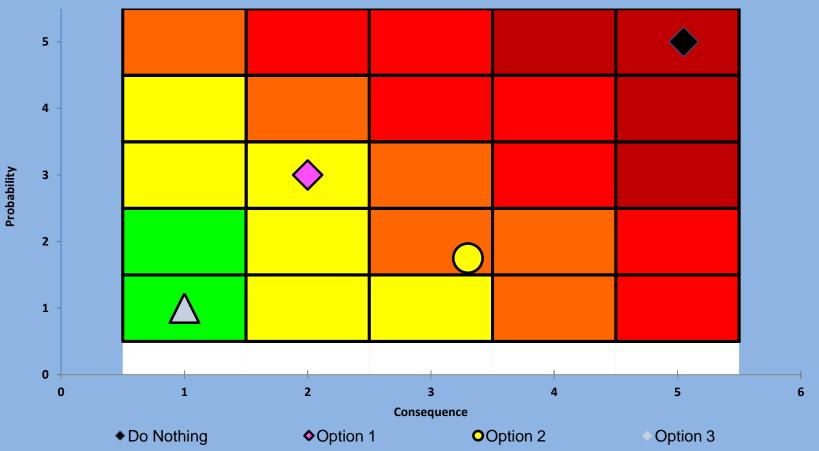
Identify showstoppers

Identify top risks for all viable options

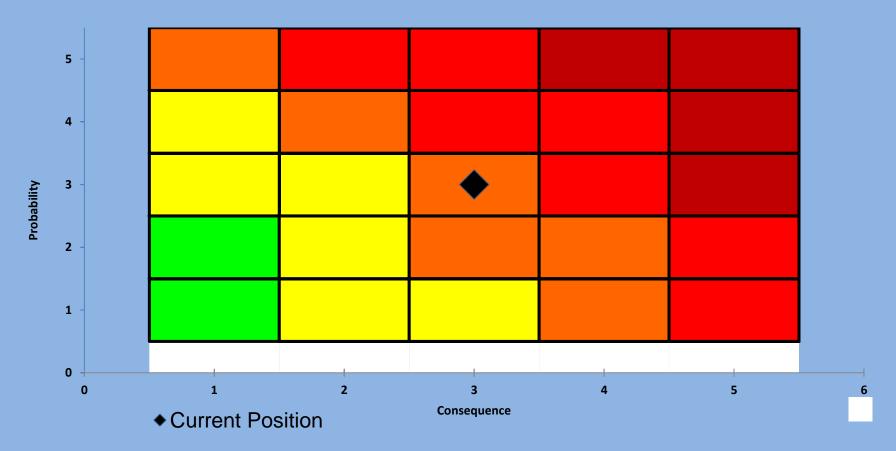

Separate risk register for each option*

Select Best Option

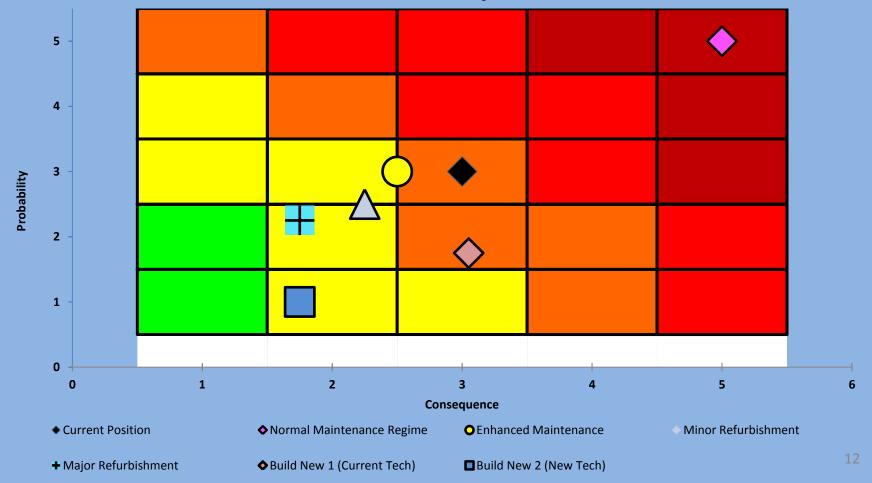
Represent options risk in IA

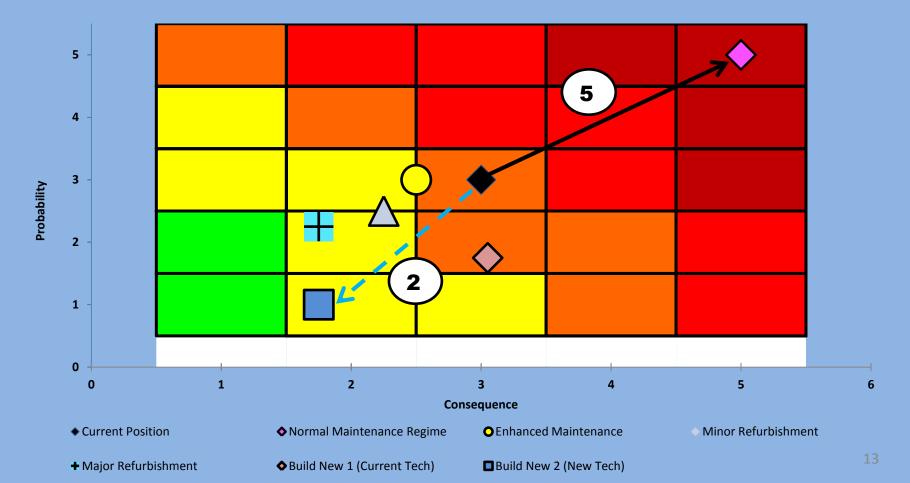

Investment Appraisal

Decide Options – First Assessment

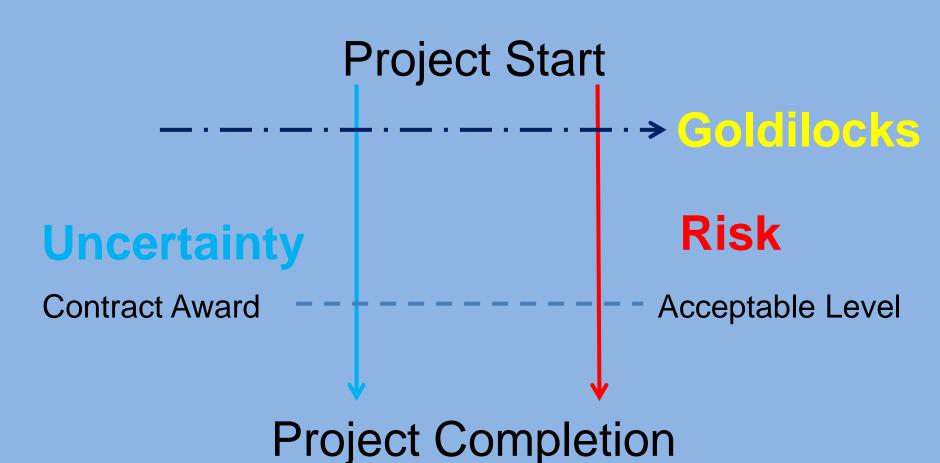


Viable Options: 1 3 6


Developing Project Options


Current Risk Profile

Realistic Options



Consider Timeframes

Methods for Quantifying and Analysing Risk Information

Assessing Uncertainty and Risk

Definition of Risk

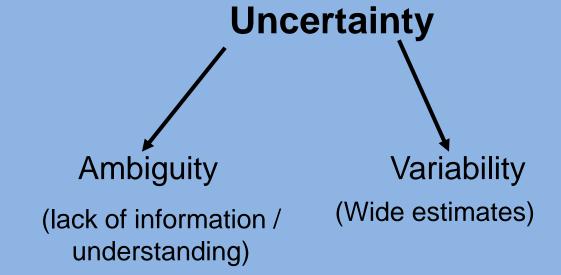
The effect of uncertainty on objectives

ISO 31000:2009

Risk management – Principles and guidelines

A Better Definition of Project Risk

A future uncertain event that could influence the achievement of Project Objectives


Risk may impact on:

Cost/Time /Quality

or a combination of these elements

Elements of Risk

Threats and Opportunities + Estimating

Are Risks, Opportunities and Uncertainty recorded on the <u>same</u> Register?

NO!!! - Causes confusion

Provide **separate** registers to record and develop the different sets of information.

Uncertainty Format

WORK OR COST BREAKDOWN STRUCTURE	BASIS OF ESTIMATION	MINIMUM COST ESTIMATE \$K	MOST LIKELY COST ESTIMATE \$K	MAXIMUM COST ESTIMATE \$K	LIKELIHOOD OF INCREASE ABOVE MOST LIKELY COST	REASON FOR COST INCREASE	COST ADDITION <u>\$K</u>	PROPOSED COST ESTIMATE \$K
--	------------------------	------------------------------------	---	------------------------------------	--	-----------------------------	--------------------------------	-------------------------------------

Risk Register Format

Risk No.	Overall Rating	Probability	Consequence	Risk Title	Project Phase	Risk Cause *	Risk Consequence *	Risk Treatment	Mitigation Action(s)	Due Date
	High	High	Medium					Treat		

Approaches To Costing Risks

Risk Number	Risk Title	Risk Treatment	Mitigation Action(s)	Probability	Financial Consequence \$	Risk Cost (Probability x Financial Consequence) \$	Mitigation Cost \$	Risk Allowance \$
R-001				25%	10,000	2,500	4,000	4,000

Information To Model Risk

Risk Number	Risk Title	Mitigation Action(s)	Probability %	Minimum Cost Estimate <u>\$K</u>	Most Likely Cost Estimate <u>\$K</u>	Maximum Cost Estimate <u>\$K</u>
----------------	------------	----------------------	------------------	--	--	--

The Toms Project Opportunity (aka 10:1) Rule

10 Risks: 1 Opportunity (Threats)

For every **10** risks you will be lucky to get **1** opportunity and the benefits of this opportunity will only be realised if it is acted on in the **early stages** of the project

Methods of Reflecting Risk In Option Selection Decisions

Costing Approach: Smaller or Lower Risk Projects

Uncertainty – Simple mathematical calculation

Risk – Greater of:

Probability x Single Point Estimate

or

Mitigation cost (if known)

Costing Approach: Higher Value / Risk Projects

Uncertainty – Simulation of 3 Point Estimates

Risk – Simulation of probabilities and 3 point estimates

Can model uncertainty and risk together

Quantitative Assessment

More accurate information allows a QUANTITATIVE assessment of risk impacts to be completed

Actual values will replace ranges:

```
Probability = 25%
```

Impact = \$2,500 or 3 days delay

Quantitative: 3 Point Estimates

Three Point Estimates can be calculated from Work Breakdown Structures etc.

Probability = 25%

Impact –Minimum -	\$2,500	or	3 days delay
Most Likely -	\$5,000	or	5 days delay
Maximum -	\$7,500	or	7 days delay

Use of Confidence Limits and S Curves

Modelling:

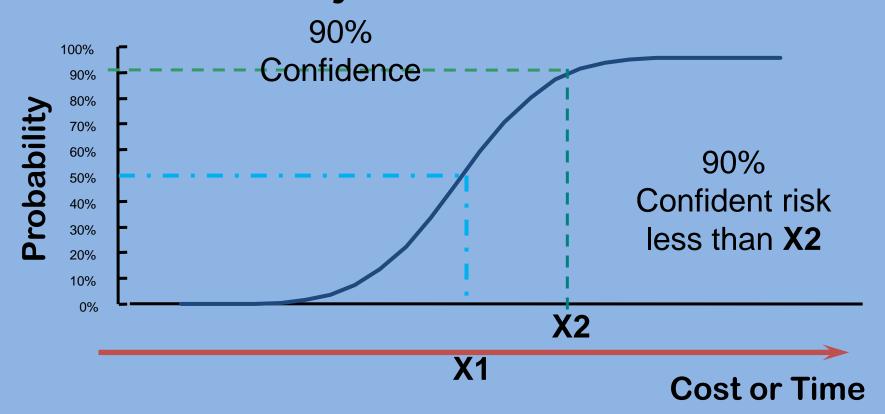
Probabilities + 3 Point Estimates of Risk and

Uncertainty

Simulated

(Monte Carlo Simulation)

Overall Confidence Limits


Cost and Time

S Curve <u>all</u> risks modelled <u>together</u>

"I think you should be more explicit here in step two."

S Curve – Project Confidence Limits

Using Simulated Information

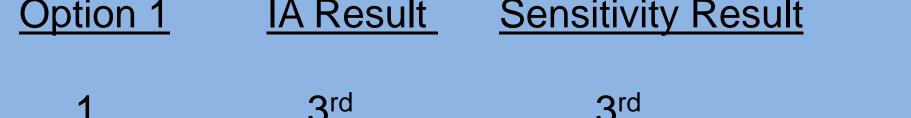
Investment Appraisal		Option 1			
<u>Year</u>	2014	<u>2015</u>	<u>2016</u>	<u>2017</u>	2019
	2014				<u>2018</u>
Cash Costs	1500	2000	2500	1000	500
Opportunities	0	-500	0	0	0
Risk @ 50% Confidence	500	400	350	100	50
DCF @ 3.5%	0	0.966	0.934	0.902	0.871
Total					
Total					
Sensitivity Analysis		Option 1			
Jensterviey / maryolo		Option 1			
<u>Year</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>	<u>2018</u>
Cash Costs	1700	2200	2900	1200	600
Opportunities	0	-300	0	0	0
Risk @ 90% Confidence	700	600	550	150	100
DCF @ 3.5%	0	0.952	0.907	0.864	0.823
DCF @ 3.3/6	U	0.532	0.507	0.004	0.023
Total					

Reflecting Risk in IAs

Vary the position in the Sensitivity Analysis:

Higher possible inflation – increase the DCF

Higher market risk – lower the Payback Period


Higher interest rates – set higher IRR

Higher costs / lower returns – increase NPV

Compare	Options	and Make Sele	ection
Option 1	IA Result	Sensitivity Resul	<u>t</u>
1	3 rd	3 rd	

2nd

1st

<u>1st</u>

2nd

Summary

Objectives / Scope must be clear

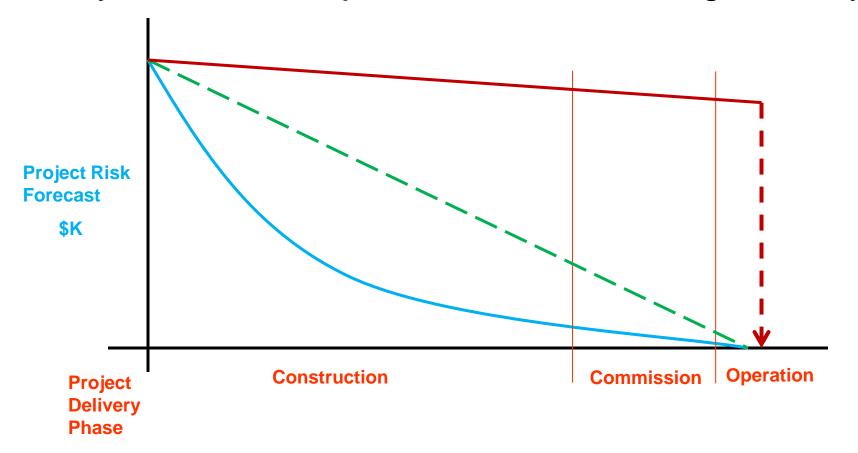
Options must be realistic

Sufficient detail to produce quantitative information

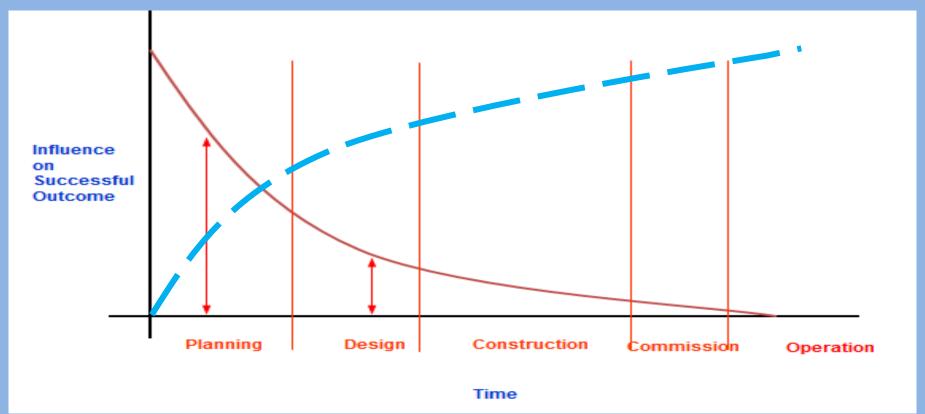
Risks costed, simulated and included in the IA / Sensitivity Analysis

Questions

ntoms@water.co.nz


Creating the Risk Budget

- Agree the overall risk budget for the project
- = based on revised 50% confidence level
- Use quantitative risk information to apportion the risk budget to individual project risks
- Align risks with the project delivery schedule
- Remove from forecast after phase completes


Risk Forecasting

Month	January	March	May	July	August	September
Delivery Phase	1	2	3	4	5	Complete
Related Risk Number	1,2,3	4, 5	6, 7	8	9	
Risk Funding \$K	450	250	150	100	50	0
Cumulative Forecast \$K	1000	550	300	150	50	0

Likely Financial Project Risk Profile During Delivery

Where Project Risk Management has the most benefits

